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Abstract. In this paper, we investigate algorithms for constructing experi-
mental data dependence based on sequential processing of the points one by
one. Four algorithms are reviewed, comparative analysis for different basis
functions, a level of noise and other options is made. In addition to static data,
there was an investigation of dynamic data case. The sine with variable fre-
quency is used as an approximative function. Numerical experiments led to the
conclusions about the comparative efficiency of algorithms and basis functions.
The recommendations for the use of the algorithms are given.
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1 Introduction

Problems of high neural network training costs stimulate the search for ways to
accelerate this process. The main directions of the acceleration are

(1) Finding a good initial approximation to the required weights of the neural net-
work, which allows to significantly accelerate global optimization algorithms for
functional errors.

(2) Parallelization of the learning process that allows you to accelerate it, using
multiprocessor computer systems and graphics cards.

(3) The use of specialized processors.

The work deals with algorithms to realize the first two approaches. If we solve the
problem of constructing RBF-network on data set, you can use the algorithms dis-
cussed below to quickly build a good approximation, using equidistant from the fixed
centers and the wide range of Gaussian basis functions. Further, it is possible to clarify
the position of the centers, and the width of the basis functions are weighting coeffi-
cients using any global optimization algorithm. Less smooth functions can be used in
the first step. In the next step, using a pre-built approximation of basis functions and
scaling operations can be obtained neural network approximation with the required
activation functions - Gaussians, sigmoid, etc.

Algorithms considered in the work allow for effective parallelization. Thus, pro-
cedures for distribution of the points for intervals and updates the weights of the basis
functions can be separated. Wherein, the interval, into which the new point may be
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determined simultaneously with the specification of the weights caused by the previous
point. Since the basis functions are non-zero only in a small neighborhood center, it is
possible to update the weight of several functions simultaneously and in parallel.
Another option is to parallelize the simultaneous use of the considered algorithms and
evolutionary algorithm of neural network training. This updated with the help of
another portion of the data processing network includes an evolving population.

Separately mention studied the possibility of applying the algorithms we have
considered building a model for dynamic data. The data obtained from the function,
which varies with time. This situation is common to observe the object whose behavior
changes in the process of building the model. The possibility of restructuring the model
in accordance with these changes.

These algorithms can be used in hybrid neural network procedures for constructing
approximate solutions of differential equations. In the first phase of operation of such
procedures by the classical method of finite difference constructed approximation on
points, the second - with the help of the algorithms considered in this paper the neural
network approximation is built, on the third - it is specified by the methods discussed in
[8-10].

Algorithms of consecutive data smoothing were studied in several works [11, 12].

In this paper, we review the methods [1-3] of finding dependence y = f(x) on
experimental data (x1,y;), (x2,y2),- .., (xy,yn) in the situation when the points (x;, ;)
are received and processed one by one, which may be associated with the need to
process data in real-time. Let the required dependence provide in view if
y =31 c;(x). where @) = p(o]x — g|) or ¢; = p(o(x — 7)?).

Such types of functions are called RBF-nets [3-5]. Finding parameters c;, o; and z;
is called network learning. In this paper considers the case, where only the parameter c;
is finding. We set other parameters ourselves.

As it known, every piecewise linear function can be represented in the sum form
Sor1 ¢ (a(x — 7)), if we chose triangular cap as basis function (Fig. 1).
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Fig. 1. The plot of the triangular cap.
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In a such way any spline can be decomposed in the sum of basis functions, which
match to its degree of smoothness [6].

In the numerical experiments we used following basis splines [6]: parabola, cubic
parabola, gaussian.

We studied several algorithms for data smoothing:

(1) Processing points one by one with the adaptation of the weights of the basis
functions with the nearest center.

(2) same, but with the adaptation of the weights of the two nearest functions.

(3) same as (2) but assumes a linear dependence of the speed of adaptation of the
weights from the distance of the abscissa of a point to the center of the basis
function [1].

(4) Finding the optimal coefficients of decomposition in basis functions the solution
of the linear system.

For approaches 1 and 3 was also studied the variation of the algorithm with a
previously determined law of variation of step.

In approaches 1-3 as the basis for adaptation of the coefficients is the minimization
of a quadratic functional of the error.

2 Approaches

2.1 Approach 1

The initial values of coefficients ¢; = 0. In the step from N-1 point to N the changing of
weight coefficient of the basis function with the nearest center, written as A¢(N), is equal

o

Ak(N) - Sk )

(1)
where

N N

Si= . 0h), Qe =Y ou(x)di(N) 2)

Moving to the next step we need to recalculate the error according to the formula:
6i(N +1) = 6i(N) — Axpy (xi).- (3)

2.2 Approach 2

Unlike the first approach, we select two basis functions between which centers is the
received point.
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The changing of weights is made according to the formulas

A= Gl Qk+2lpk7Ak+1 = M (4)
SeSkvr1 — Py SiSie1 — P2
where
N
Pe= Zizl (X)) P11 (x:)- (5)

When the denominator of (2) turns to the zero we use formulas (7) and (8). Moving
to the next step the terms in the sum (2) and (5) are added for all basis functions, for
which ¢, (x;) # 0.

Error 6; when moving to the next step you need to recalculate according to the
formula:

0i(N+1) = 0i(N) — Axpy(xi) — Ak 1041 (x2) (6)

2.3 Approach 3

Let xy is between the centers of the functions with numbers k and k + 1. In previous
notation we use the formula [1]:

Ae(N) = A(N)2, Ak 1(N) = A(N)(1 = 2), ()

where 4 = %20 (1]
Tk 12k

We find the number A; (N) by the minimization of the error function and so it is equal

AN) = 20k + (1 — 2)Ok 41

) N 2 . (8)
A Sk+2j.(1 — /L)Pk+ (1 — )) Sk+1

Moving to the next step we need to recalculate an error according to the formula
Error when moving to the next step you need to recalculate according to the formula

Si(N+1) = 8;(N) — AN) (App (x:) + (1 — 2oy 1 (%)) )

For approaches 1 and 3 decreasing by a given law A;(N) can be used instead of
formulas (1), (7) and (8), for example, A(N) = (1 — %)Nék(N), where T = 51 + Nyax [1].
This significantly reduces the amount of computation.

2.4 Approach 4

This approach involves the construction of linear regression and involves solving
systems of linear equations, which can be obtained by a recurrent way when we get a
new point [3, 4, 7].
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3 Results of Numerical Experiments

Comparative testing of algorithms of the approaches 1-4 for the above basis functions for
different values of the error dimensions, the number of points and number of basis
functions was done. Also, the cases of dynamic (variable in time) data were analyzed at the
different sets of parameters and the choices of basis functions. The interval of the argument
[0;1]. Below are illustrations of the algorithms results, some of the most characteristic data
of numerical experiments and conclusions obtained in the analysis of the results of these
experiments. The first picture shows the result of processing experimental dependence,
obtained by generate points around the function sin(nx) + 0.1 sin(10nx), using the first
algorithm and the formulas from [1] to 20 basis functions, a 400-hundred experimental
points, the error of “measurement” — 0.1 and 10 runs of the algorithm.

Fig. 2. The result of the first algorithm for static data.

Fig. 3. Results of the second approach for dynamic data.
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Figure 3 shows the results of applying this second approach to dynamic data. We
approximate the function sin(wnx), where w varies over the computational time from 1
to 4.5. Basis function - cubic parabola. 300 experimental points. 10 basis functions.
Measurement error - 0,1. There are three moments in which the original function has
the forms, respectively: sin(nx), sin(2,25 nx), sin(nx 4,5) (Fig. 3, Table 2).

Table 1. Mathematical expectation of error for the eight tests of the algorithm with 50 points.
Static data. Approximative function - sin(nx). The number of basis functions - 10. The number of
experimental points - 50.

€ m | Approach | Triangular cap | Parabola | Cubic parabola | Gaussian
0.01|10 |1 E. 0.0045 0.0359 |0,0251 0,0337
1 10 0.2880 03115 ]0,0404 0,0308
0.011 0.0247 0.0363 |0,0536 0,0209
001101 A. 0,0047 0,0050 |0,0056 0,3342
1 10 0,0320 0,0406 |0,0361 0,0355
0.011 0,1888 0,1126 |0,1130 0,1313
0.01/10(2 0,0039 0,0039 |0,0054 0,0038
1 10 0,0331 0,0330 |0,0281 0,0343
0011 0,0057 0,0150 |0,0195 0,0146
0.01 10 |3 E. 0,0132 0,0125 ]0,0238 0,0217
1 10 0,0292 0,0378 |0,0387 0,0398
0.01|1 0,0464 0,0403 |0,0365 0,0487
0.01 /103 A. 0,0044 0,0044 |0,0053 0,0422
1 10 0,0278 0,0342 |0,0358 0,0579
0.01|1 0,1016 0,0975 |0,0945 0,1041
0.01 4 0,0031 0,0035 |0,0040 0,0080
1 0,2838 02542 | 0,2633 0,2901

Here and next, € - error of observations, m - the number of iterations of an
algorithm, n - the number of points, A. is for adjustable step in accordance
with the following formula from [1], E. is for exact step in accordance with
the formulas given above for each algorithm.

Table 2. Mathematical expectation of error for the four tests of the algorithm. Dynamic data.
Approximative function - sin(wnx), where w varies over the computational time from 1 to 2 and

up to 4.5. The number of basis functions is 10. Measurement error is 0.1.

m |n |w | Approach | Triangular cap | Parabola | Cubic parabola | Gaussian
100 300(4,5|1 0,4252 0,4084 |0,4060 0,4360
50 1002 0,1908 0,1910 |0,1755 0,1811
100 300|4,5|2 0,2880 0,2624 |0,2481 0,2348
50 | 1002 0,1454 0,1361 |0,1321 0,1233
100|300 |4,5|3 0,4176 0,4296 |0,4422 0,4767
50 1002 0,1854 0,1815 |0,1779 0,1817
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Conclusions

Reviewed algorithms and basis functions showed good performance in the con-
sidered task.

None of the algorithms does not have a decisive advantage over others. This
allows us to recommend the simplest of them — the first.

The advantages of exact computation of step over the formula from [1] could not
compensate for a substantial increase in computational complexity, if the number
of points is large enough, or duplicated as necessary.

For large errors and a small number of experimental points, all the methods are
unsatisfactory. Some better than others, the results of smoothing using cubic basis
function for a large number of points and the gaussian for small.

The results we got using different basis functions approximately the same. The
choice of specific function is dictated by conditions on the smoothness. If such
conditions exist, then the preferred is a triangular function because of the mini-
mality of computational complexity. If these conditions are not known in advance
or sufficiently rigid, it is preferable gaussian, as having infinite smoothness.

The best of the considered algorithms for dynamic data smoothing is approach 2,
as it handles much better the end of the interval.

The paper is based on research carried out with the financial support of the grant of
Russian Science Foundation (Project No. 14-38-00009, the program-targeted

management of the Russian Arctic zone development). Peter the Great St. Petersburg
Polytechnic University.
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